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Today’s objectives 

See applications of multiparty computation (MPC)


Sketch definition of semi-honest security 

Introduce the notion of a simulator
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MPC Applications
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Secure Auctions

Privacy-preserving advertising

Privacy-preserving studies

Privacy-preserving analytics

   (Secure Machine Learning)
Financial Fraud Detection
…and much more
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What is a Protocol
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interactive, randomized algorithms
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We will model parties as 
interactive, randomized algorithms

r ∈$ {0,1}*

s ∈$ {0,1}*

Unless otherwise stated, we will 
assume secure point-to-point 
channels between parties and that 
the network is synchronous
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Π

outputA = f(x, y) outputB = g(x, y)

Correctness: if parties follow the protocol, they get the correct output



y

Privacy (informal)

Bob learns nothing about Alice’s input, 
except for what is implied by the 
function output (and vice versa)

Semi-honest Security
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Bob(x, y) = { y, m0, m1, ... }
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f(x, y)

ViewIdeal
Bob (x, y) = { y, f(x, y) }
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ViewΠ
Bob(x, y) = { y, m0, m1, ... }
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Real

ViewIdeal
Bob (x, y) = { y, f(x, y) }

Ideal

ViewΠ
Bob(x, y) = { y, m0, m1, ... }

These should “look the same”
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Real

OutputSim
Bob(x, y) = { y, m0, m1, ... }

Ideal

ViewΠ
Bob(x, y) = { y, m0, m1, ... }

These should “look the same”
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Today’s objectives 

See applications of multiparty computation (MPC)


Sketch definition of semi-honest security 

Introduce the notion of a simulator
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